Sampling and Spatial Representation

The Acquisition and Content of GIS Data

Karl Hermann, EPA/Region 8 - Presenter

Spatial Representation

Content

How spatial data is handled in a GIS
The importance of scale
The temporal dimension
Portrayal of thematic layers

Acquisition

Primary techniques Associated issues

Goal of data representation in GIS:

To provide spatial characterization of thematic 'layers' at desired scales and level of detail

Usually, the representation is an abstraction of reality

- a point for a city
- a line for a highway

Three Dimensions of the World:

- Spatial variation in place
- Temporal variation in time
- Thematic variation in a characteristic

- All GIS handle spatial and thematic
- Many handle temporal

Spatial Dimension

"How to Represent Spatial Features in a GIS"

Geographic features are usually represented in a GIS as spatial features with x,y, and sometimes, z and t (time) coordinates.

"Digital World"

X,Y,Z

Vector Data

points lines (arcs) areas (polygons)

Raster Data grids (grid cells or pixels)

Geographic Information Systems

Spatial Features

Attributes

Counties	Fips	St	Cntyname	
0	0			
2826	30053	MT	LINCOLN	
3056	38067	ND	PEMBINA	
2802	30029	MT	FLATHEAD	
3008	38019	ND	CAVALIER	
2808	30035	MT	GLACIER	
3084	38095	ND	TOWNER	
3068	38079	ND	ROLETTE	
2874	30101	MT	TOOLE	
2998	38009	ND	BOTTINEAU	
2824	30051	MT	LIBERTY	
2814	30041	MT	HILL	

polygons

50 0 50 100 kilometers

Raster Data

Fixed cell size

grid cells or pixels

Coordinate References

true shape of the Earth (topography and geoid) ellipsoid (spheroid) datums (horizontal and vertical)

projection

coordinate system

Ellipsoids

Clark 1866

GRS 1980

Datums

NAD27

NAD83

Projections and Coordinate Systems

- definition with respect to latitude and longitude
- truth on given latitude(s) or longitude(s)

Projections

Albers

UTM

State Plane

etc.

Coordinate Systems

units (meters, feet)

origin

false eastings or northings

Scale

"How do we want to view the data?"

Level of Abstraction / Detail Intended Use

Scale is a Representative Fraction

smaller scale vs. larger scale 1/2,000,000 < 1/100,000

smaller (coarser) scale data is NOT bad

GIS Data Quality Objectives: Locational accuracy DQO varies with scale

Hydrography Example: Four Scales

Scale

Digital Elevation Model Example shown at three scales

900 meter cell size ~ 1:2000000 source

90 meter cell size ~ 1:250000 source

30 meter cell size ~ 1:24000 source

Temporal Dimension

"How to Represent Time in a GIS"

Handling Time and Date

Metadata record of the theme

Attribute (for fixed or dynamic themes)

GIS with temporal handling ability (update history)

GIS in the future is x,y,z,t

Temporal Issues

Date of source

Date of labeling / attribution

Dynamic nature of theme

Thematic Dimension

"How to Represent Spatial Themes in a GIS"

Aggregation is f(scale)

smaller scale
aggregated units
less detail

Precise Boundaries vs. Ecotones

Degree of "fuzziness"

discrete classes

f(fence lines)
f(ownership lines)
artifical features

continous variation

elevation soils temperature

Classification Issues

Mixed types per unit (area or pixel)

Normalization (account for unequal areas)

Definitions (density, width, priority)

Count Identity Order Interval

GIS Data Acquisition

"How do we get Data into a GIS?"

GIS Data Acquisition

Spatial data collection methods

Direct Measurement

Remote Sensing

Secondary Measurements

Mapping and sampling techniques are included in all three methods

Method Variables

Accuracy and Precision

Scale of Materials and Analysis

Resolution of Materials/Instruments

Orthographic Integrity

Interpretation Skills

Date and Time

GIS Data Acquisition Techniques

Mapping

Surveying, remote sensing, ...
Interpretation and delineation
Digital conversion

Sampling

Thematic assignment
Interpolation / extrapolation
"Training data" for mapping

Mapping

- Compilation, interpretation, and/or delineation
- Field data, remotely-sensed data, and/or other
- Need to use or define proper geographic base

- Mapping standards
- Interpretation/classification SOPs
- Quality assurance

Sampling Purposes

- Capturing continuous variation
- Basis for population estimates
- "Representative" detail

Sampling

A Method of Capturing Continuous Variation

- Examples are: elevation, atmospheric temperature and pressure, natural vegetation and soil type
- Variation can be captured through a sampling design

Measurements in designs can include:

- taking measurements at sample points
- taking measurements along a transect
- characterizing an area frame

Direct Measurements

Locational

surveying

GPS

feature identification address identification

Attributes

Qualitative

windshield survey observation by design

Quantitative

sample design protocol

Global Positioning System

Locational estimation
Sample-based procedure

GPS Sample Data

Raw - Uncorrected

Corrected

GPS Procedures SOP and QA Considerations (Plan)

standard parameters checklist adequate sample size

differential correction sample mean "reality check" GPS unit verification

GPS Quality Assurance

Once a year, for each unit:

- Procedure applied to known geodetic control
- Multiple units, multiple times, multiple controls
- Adequate samples for analysis of results

Accuracy assessment

Precision assessment

Repeatability assessment

Remote Sensing

sensor resolution geometric correction / registration interpretation / classification

aerial photography digital scanner-based digital satellite-based

Remote Sensing Issues

Analog

Aerial photo interpretation skills Repeatability

Digital

Classification confusion

Geometric rectification
Mapping unit size
Resolution
Accuracy assessment

Photogrammetric Mapping

Stereo model (3-D viewing)

Registration to geodetic control

Interpretations / delineations performed from model

Secondary Measurements

Address matching

Map interpolation

Feature matching / transfer

Orthographic integrity
Geodetic control

Secondary Measurement Issues

Lack of SOP

Poor control base

Unknown / uncertain accuracy

Incorrect interpolation / interpretation

variability (inconsistency)
repeatability
compounded error

Interpolation and Extrapolation

Between and beyond samples
Sample design and/or point distribution
is critical to success

Point source input, modeling method (software version) and metadata are very important.

Area Assignment Based on Samples

Thiessen Polygons need adequate density and distribution

Conclusions

- GIS data content and issues
- How GIS data represent "real world" features
- Importance and meaning of scale
- Mapping and sampling techniques and issues

Questions / Comments

